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Instructions
e Attempt all questions.
e Answers to be written on the paper provided.
e Start each question on a new page.
o All working must be shown. Full marks may not be awarded for poorly set out

work.

e Indicated marks are a guide and may be changed slightly if necessary during the
marking process.

e Approved calculators may be used.

o These questions must be handed in on top of your solutions.



SECTION 1: MULTIPLE CHOICE:
Answer on the Multiple Choice Answer Sheet provided.

3

1. For what values of x is the curve ¥ = 4x? — x* concave upwards?

A,0<x<§ Bx<§

4 8
C.x>§ D.x<0,x>-§

2. Below is the graph of the function v = f(x).

A possible equation for this function is:

A y= Zsin(x+§) B.y =sin 2(x——~z~)
C.y = ~2cos(x + 3;*) D.y = 2sin(x — “E“)
lim Sinx
3. xgg 7
A7 B.0 C.- D. o



4. The shaded area in square units is:
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Which of the following is true about y = f'(x)?
a) There is a stationary point at x = —1.

b) There is an inflexion pomt at x = 1.

c) The x intercepts are -1 and 2.

d) They intercept is 0



SECTION 2: Write vyour solutions in the answer booklet provided.

QUESTION 6 (8 marks)

a) Differentiate tan®x with respect to x.

b) Find the exact value of the gradient of the tangent to the
curve ¥y = xSinx at the point where x = -g-

¢) Find i) [T gy

i (21
i) [. L = dx

QUESTION 7 Start a new page (8 marks)

a) The normal to the curve y = 3tan2x at the point P (g, 3)
cuts the v axis at Q. Find the coordinates of Q in exact form.

b) A rectangle is cut from a circular disc of radius 3 cm.

) Show that the area of the rectangle is given by
A =136 — [2, where | is the length of the rectangle.

it) Find the area of the largest rectangle that can be produced.

MARKS



QUESTION 8 Start a new page (8 marks)

a) Calculate the area bounded by the curve y = x? — 4
and the x axis, betweenx=1 and x = 3.

b) 1) Sketchy = 3sin2xfor0 < x < m.
i) State the period and amplitude of y = 3sin2x.

i1i) On the same set of axes, sketchy = cosx for 0 < x < 7.

1v) State how many solutions exist for 3sin2x — cosx = 0
for0 < x <m.

QUESTION 9 Start a new page (8 marks)

a) [5sin(3x + 2)dx

b) Using the substitution # =2~ x, or otherwise,

evaluate J-lz xN2—-xdx.

¢) The curves y? = 8x and y = x2 intersect at A.

i} Find the coordinates of A.
i1) Calculate the volume of the solid generated when the
shaded region is rotated about the y axis.

MARKS

[ N



QUESTION 10 Start 2 new page (8 marks) MARKS

. 5 .
a) i) f—s V25 — x?dx represents the area of a semi-circle. I
Calculate the exact area of this semi-circle.

i) Use Simpson’s Rule with 5 function values to find an
o 5 :
approximation to f_s V25 - x?dx, correct to 3 decimal places. 2

iii) By comparing your results from parts 1) and ii), find the
percentage error in the use of the Simpson’s Rule for the 2
approximation of the actual area.

b) The area enclosed between the curve y = 2sinx and the x axis for 3
0 < x < 7 is rotated about the x axis. Find the volume of the solid
formed.

QUESTION 11 Start a new page (8 marks)

a)

The diagram shows the section of a circle
of radius r metres and angle & radians.

r

If the area of the sector is 50m?, find an expression for the perimeter 2
of the sector in terms of r only.

b) Forthe curve y = x* — 2x5,

1)  Find the stationary points and determine their nature. 3
if)  Find any inflexion points. 2
i) Sketch its graph, showing all important features. 1

END OF TEST
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